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Abstract
We consider the problem of projective clustering in Eu-
clidean spaces of non-fixed dimension. Here, we are given
a set P of n points in Rm and integers j ≥ 1, k ≥ 0, and the
goal is to find j k-subspaces so that the sum of the distances
of each point in P to the nearest subspace is minimized.
Observe that this is a shape fitting problem where we wish
to find the best fit in the L1 sense. Here we will treat the
number j of subspaces we want to fit and the dimension k
of each of them as constants. We consider instances of pro-
jective clustering where the point coordinates are integers
of magnitude polynomial in m and n. Our main result is
a randomized algorithm that for any ε > 0 runs in time
O(mn polylog(mn)) and outputs a solution that with high
probability is within (1 + ε) of the optimal solution.

To obtain this result, we show that the fixed dimensional

version of the above projective clustering problem has a

small coreset. We do that by observing that in a fairly

general sense, shape fitting problems that have small coresets

in the L∞ setting also have small coresets in the L1 setting,

and then exploiting an existing construction for the L∞
setting. This observation seems to be quite useful for

other shape fitting problems as well, as we demonstrate by

constructing the first “regular” coreset for the circle fitting

problem in the plane.

1 Introduction

A shape fitting problem is specified by a pair (Rd,F),
where Rd denotes the d-dimensional Euclidean space
and F is a family of shapes in Rd. For example, F
can be the family of all hyperplanes in Rd; that is, each
element of F is a hyperplane in Rd. Two more examples
that are of considerable interest to our work are:

1. The (j, k) projective clustering problem, where for
some j ≥ 1 and 0 ≤ k ≤ d − 1, F is the family
of shapes with each shape being a union of j k-
subspaces.

2. The circle fitting problem where d = 2, and F is
the family of all circles in the plane.

An instance of a shape fitting problem (Rd,F) is
specified by a finite set of points P ⊆ Rd, and the goal
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is to find the shape F ∈ F that best fits P . To define
this goal formally, let us assume that there is a function
dist : Rd×F → R+ that given a point p ∈ Rd and shape
F ∈ F specifies the “distance” of point p from shape
F . In this article, we will take this to be the minimum
Euclidean distance from p to a point in the shape F , i.e.
minq∈F ‖ p− q ‖2. Let cost(P, F ) =

∑
p∈P dist(p, F )

denote the cost of fitting point set P with shape F .
The shape fitting problem (Rd,F) then is the fol-

lowing: given a finite set P = {p1, . . . , pn} ⊆ Rd
of points, find F ∈ F that minimizes cost(P, F ).
We will refer to this problem as shape fitting
in the L1 sense, since the goal is to find the
shape F that minimizes the L1 norm of the vector
[dist(p1, F ),dist(p2, F ), . . . ,dist(pn, F )]. In contrast,
the shape problem (Rd,F) in the L∞ sense takes as
input a finite P ⊆ Rd as before, but seeks to find the
shape F ∈ F that minimizes maxp∈P dist(p, F ).

One special case of the (j, k) projective clustering
problem that is considered here is the integer (j, k)
projective clustering problem. Here, the coordinates of
each of the input points in P are restricted to be integers
of magnitude at most ∆ = (nd)c, where c > 0 is a
constant that can be chosen to be arbitrarily large.

In the context of a shape fitting problem (Rd,F), a
coreset for a point set P is informally a smaller, possibly
weighted set Q so that for any shape F ∈ F , the cost of
fitting P with F is approximately the same as the cost
of fitting Q with F . There are variants of this notion
that have different flavors, but a small coreset is of
interest because solving the shape fitting problem near-
optimally for the coreset yields a near-optimal solution
for the original point set. Another related application
is in the context of small-space streaming algorithms,
where a coreset compactly represents the point set in
the context of the shape fitting problem.

Formally, for a shape fitting problem (Rd,F)
and an approximation parameter 0 ≤ ε < 1, an
L∞ ε-coreset for point set P ⊆ Rd is a sub-
set Q ⊆ P such that for any shape F ∈ F ,
maxq∈Q dist(q, F ) ≥ (1−ε) maxp∈P dist(p, F ), or equiv-
alently maxp∈P dist(p, F ) − maxq∈Q dist(q, F ) ≤ ε ·
maxp∈P dist(p, F ). The size of the coreset Q is defined
to be |Q|.
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An L1 ε-coreset for P is a subset S ⊆ Rd of
points, with each point p ∈ S associated with a weight
wp ≥ 0, such that for any F ∈ F , we have |cost(P, F )−
cost(S, F )| ≤ ε · cost(P, F ). Here, we abuse notation
slightly to let cost(S, F ) =

∑
p∈S wp · dist(p, F ). The

size of the coreset is defined to be |S|.

1.1 Previous Work. There has been a vast amount
of work on the (j, k) projective clustering problem,
falling under two categories. In the fixed dimen-
sional setting, the dimension d is considered a constant,
whereas in the high dimensional setting, d is part of the
input. To give a concise review of the previous work
that is relevant to this article, we will focus on the task
of finding a shape whose fit is within (1 + ε) of the op-
timal, where ε > 0 is an arbitrarily small constant. In
this context, we are interested in (a) algorithms with
running times near-linear in the input size, which can
be taken to be n, the number of input points, in the
fixed dimensional setting, and n · d in the high dimen-
sional setting; and (b) coresets whose size is bounded
by a polynomial in log n in the fixed dimensional setting
and by a polynomial in d · log n in the high dimensional
setting. With this focus, we may restrict our attention
to the case where j and k are both (arbitrarily large)
constants.

When j = 1, the shape that we want to fit is a
single k-dimensional subspace. Near-linear algorithms
are known here in both the L1 and L∞ settings even
when the dimension is part of the input; we refer the
reader to [26, 30, 21, 19]. The recent work of Feldman
and Langberg [19] constructs small L1 coresets in such
high dimensional contexts.

Turning to j > 1, the (j, 0) projective clustering
problem in the L∞ and L1 senses are better known as
the j-center and j-median problem, respectively. When
the dimension is a constant, some early constructions [1,
25] describe near-linear algorithms and small coresets.
In high dimensions, Badoiu et al. [9] present a near-
linear algorithm and a weaker type of coreset for shape
fitting in the L∞ sense. For shape fitting in the L1

sense, early near-linear algorithms can be found in
[9, 27]; later works not only improved the running
time but gave increasingly smaller coreset constructions
[11, 20, 28, 19].

In the (j, 1) projective clustering, the shape that
we want to fit is a union of j lines. In fixed dimension,
a near-linear algorithm and a coreset construction was
given by [5] for the L∞ context and by [17, 23] for the
L1 context. In high dimension, a near-linear algorithm
for the L1 context given by [15]; a coreset construction
was recently given by [19].

Such a pleasant state of affairs does not persist

for the (j, k) projective clustering problem for k ≥
2. No near-linear algorithms are known even in fixed
dimension, and Har-Peled [22] gives fixed-dimensional
examples that demonstrate that small coresets need
not exist. To address this situation, some of the
research presents near-linear bicriteria approximation
algorithms [18, 19], where the output shape can have
more than j subspaces, each with dimension k or
somewhat larger. Another direction starts with the
observation that the points in the example of Har-Peled
[22] have coordinates that when viewed as integers are
exponentially large. Thus, Edwards and Varadarajan
[16] consider the integer (j, k) projective clustering
problem, where these coordinates are only polynomially
large. For this problem, they give small coresets
and near-linear algorithms in the L∞ sense in fixed
dimension. This article extends this line of research,
as described below.

On the practical side, there are several heuristics
for versions of the (j, k) projective clustering problem,
including CLIQUE [8], ENCLUS [12], DOC [29], PRO-
CLUS [6], ORCLUS [7], and [4].

The circle fitting problem. The problem of
fitting a circle to a set of points in the plane and a
cylinder to a set of points in R3 has received considerable
attention, see [2] for some earlier references. Near-linear
algorithms and small coresets were first discovered for
the L∞ setting [1]. Subsequently, Har-Peled [24] was
able to obtain near-linear algorithms for the L1 setting.

1.2 Our Results and Techniques. Our first result
is a near-linear algorithm for integer (j, k) projective
clustering in the L1 sense when the dimension is part
of the input. Recall that in this problem we are given a
set P of n points in Rm and integers j ≥ 1, k ≥ 0, and
the goal is to find j k-subspaces so that the sum of the
distances of each point in P to the nearest subspace
is minimized; the point coordinates are integers of
magnitude polynomial in m and n. Our randomized
algorithm , for any parameter ε > 0, runs in time
O(mn polylog(mn)) and outputs a solution that with
constant probability is within (1 + ε) of the optimal
solution.

To obtain this result, we observe that in a fairly
general sense, shape fitting problems that have small
coresets in the L∞ setting also have small coresets
in the L1 setting. Using this observation, and the
coreset construction of [16] for the L∞ setting in fixed
dimension, we are able to obtain a small coreset for the
L1 setting in fixed dimension. To solve the problem
when the dimension is part of the input, we use a
known dimension reduction result of Deshpande and
Varadarajan [15].
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Thus, we give the first near-linear algorithm for an
interesting case of (j, k) projective clustering in high
dimensions, when j and k are arbitrarily large constants.
Another way of stating our result is that we have a near-
linear approximation for the general (not integer) (j, k)
projective clustering problem, provided the optimal fit
is only polynomially smaller than the diameter of the
input point set.

Our observation that shape fitting problems that
have small coresets in the L∞ setting also have small
coresets in the L1 setting appears to be useful beyond
the projective clustering problem. We demonstrate this
by using it to present a small L1 coreset for the circle
fitting problem, thus answering a question posed by
Har-Peled [24]. The near-linear algorithm of Har-Peled
for this problem does work via a compact representation
of the input point set, but this representation is not an
L1 ε-coreset as defined here.

The connection between L∞ and L1 coresets builds
on a sampling scheme due to Langberg and Schulman
[28] for constructing small L1 coresets. Their sampling
scheme, which is a low-variance sampling scheme like
some earlier ones [11, 13, 14, 20], is based on the notion
of sensitivity. Roughly speaking, they show that shape
fitting problems with small sensitivity have small L1

coresets. What we observe is that shape fitting problems
with small L∞ coresets have small sensitivity. What our
paper hopefully argues is that the resulting connection
between L∞ and L1 coresets is a conceptually useful
one.

Organization of the article. We have already
defined the shape fitting problems we will consider,
together with the notions of L1 and L∞ coresets.
In Section 2, we describe the sampling scheme of
Langberg and Schulman [28] that is based on their
notion of sensitivity. In Section 3, we show that shape
fitting problems with small L∞ coresets have small
sensitivity. As a consequence, we have a shape-oblivious
sampling scheme for integer projective clustering and
circle fitting that with high probability is good for any
single shape in the family F of shapes. To be able
to say that the sample is good for every shape in F ,
we need to (a) argue that there is a polynomial-sized
subfamily F ′ ⊆ F that is a good “discretization” of
the whole family F , and (b) just apply a union bound
over the subfamily F ′. We do this in Section 4 to
derive a small L1 coreset for circle fitting and integer
projective clustering in fixed dimension. It is worth
pointing out that while the discretization step is a
standard feature in many constructions of L1 coresets,
the nature of the shape fitting problems we consider
forces us to adapt a relatively recent discretization due
to Vigneron [31]. Finally, in Section 5, we obtain our

near-linear algorithm for integer projective clustering in
high dimensions.

2 Preliminaries: Sampling Scheme Using
Sensitivity

Langberg and Schulman [28] defined the notion of sen-
sitivity in the context of shape fitting problems, and
demonstrated the usefulness of sampling using sensitiv-
ity for constructing small L1 coresets. We describe their
sampling scheme, which is a key ingredient of the results
reported here. Let P ⊂ Rd be a point set corresponding
to some shape fitting problem (Rd,F). For any point
p ∈ P , the sensitivity of p is defined to be

σP (p) := sup
F∈F

dist(p, F )∑
q∈P dist(q, F )

The total sensitivity is defined to be

Sn := sup
P⊂Rd,|P |=n

∑
p∈P

σP (p)

From the above definition, it worth noting that the
sensitivity of p, σP (p), depends only on the input point
set P . In other words, for the input point set P , we
can compute the sensitivity σP (·) : P → [0, 1], and
σP (p) does not depend on the choice of any shape F .
The total sensitivity, Sn, only depends on the size of
the input point set P , n; it does not depend on any
particular choice of P . A trivial upper bound for Sn

is n, as σP (p) ≤ 1 for every p ∈ P . However, as the
sampling scheme below requires that the size of a good
sample depends on (the upper bound of) Sn, it is
desirable to obtain better bounds on Sn.

Let sP be a (point-wise) upper bound of σP (·) (i.e.
∀p ∈ P , σP (p) ≤ sP (p)), then

∑
p∈P sP (p) is an upper

bound of
∑
p∈P σP (p). We drop the subscript “P” of

sP and σP (·) in the following discussion when it is clear
from context that the input point set is P . The sampling
scheme is the following: define a probability distribution
on P , where the probability of picking p ∈ P is

(2.1) Pr (p is chosen) =
s(p)∑
p∈P s(p)

Independently pick a (multi)set R of r points from P
(with replacement) according to the above probability
distribution, the final output is the weighted point set
S, where the weight wp of a point p ∈ S is

wp :=
1
r
· 1

Pr (p is chosen)
=

1
r
·
∑
p∈P s(p)
s(p)
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Lemma 2.1. For a fixed shape F , we have

E(cost(S, F )) = cost(P, F ),

Var (cost(S, F )) ≤ 1
r
·

∑
p∈P

s(p)

 · (cost(P, F ))2
.

where (as we recall)

cost(S, F ) =
∑
p∈S

wpdist(p, F ),

cost(P, F ) =
∑
p∈P

dist(p, F ).

Lemma 2.2. Fix a shape F . Let ε ∈ (0, 1).

(2.2) Pr (|cost(S, F )− cost(P, F )| ≤ εcost(P, F ))

≥ 1− 2 exp

(
−r · ε2

2(1 +
∑
p∈P s(p))2

)
Proof. Denote the cost of assigning the weighted point
in ith draw by Xi. The expectation of Xi is
cost(P, F )/r:

E(Xi) =
∑
p∈P

(wpdist(p, F )) · Pr (p is picked)

=
1
r
·
∑
p∈P

dist(p, F ) =
1
r

cost(P, F )

Moreover, Xi is bounded from above by (
∑
p∈P s(p)/r) ·

cost(P, F ): if an arbitrary point p is picked, the cost
of assigning the weighted point p to F is wpdist(p, F );
plugging in the definition of wp, we have

wpdist(p, F ) =
1
r
· 1

Pr (p is picked)
· dist(p, F )

=
1
r
·
∑
p∈P s(p)
s(p)

· dist(p, F )

≤ 1
r
·

∑
p∈P

s(p)

 · cost(P, F )

The last inequality follows from the definition of sensi-
tivity of point p:

dist(p, F )
cost(P, F )

≤ σP (p) ≤ s(p)

Note that we have

|cost(S, F )− cost(P, F )| =

∣∣∣∣∣
r∑
i=1

Xi − r ·
1
r

cost(P, F )

∣∣∣∣∣
=

∣∣∣∣∣
r∑
i=1

(
Xi −

1
r

cost(P, F )
)∣∣∣∣∣

Consider the random variable Xi− 1
r cost(P, F ). We

have

E
(
Xi −

1
r

cost(P, F )
)

= 0,

|Xi −
1
r

cost(P, F )| ≤
∑
p∈P s(p)
r

· cost(P, F )

+
1
r
· cost(P, F ) =

1 +
∑
p∈P s(p)
r

· cost(P, F )

An application of Azuma-Hoeffding implies that

Pr (|cost(S, F )− cost(P, F )| ≥ εcost(P, F ))

≤ 2 exp

− (εcost(P, F ))2

2 · r ·
(

1
r ·
(

1 +
∑
p∈P s(p)

)
· cost(P, F )

)2


≤ 2 exp

−r · ε2

2
(

1 +
∑
p∈P s(p)

)2


�

The Lemma suggests that for the sampling scheme
is effective for any fixed shape F ∈ F provided r is

significantly larger than (1+
P
p∈P s(p))

2

ε2 . It is therefore
natural to identify shape fitting problems for which∑
p∈P s(p) is o(

√
n), where n = |P |. We turn to this

question next.

3 L∞ Coresets to Sensitivity

In this section, we describe a key observation that shape
fitting problems with small L∞ coresets have small
sensitivity.

Lemma 3.1. Consider a shape fitting problem (Rd,F).
Suppose that for some 0 ≤ δ < 1, there is non-decreasing
function fδ(n) so that any point set P ′ ⊆ Rd of size n
admits an L∞ δ-coreset of size at most fδ(n). Then for
any P ⊆ Rd of size n, we can compute an upper bound
s(p) on the sensitivity σP (p) for each p ∈ P , so that∑
p∈P s(p) ≤

fδ(n) logn
1−δ .

Proof. We construct a sequence of subsets P = P1 ⊇
P2 ⊇ P3 · · ·Pm, where m ≤ n and |Pm| ≤ fδ(n). Pi+1

is constructed from Pi as follows. If |Pi| ≤ fδ(n),
the sequence ends. Otherwise, we compute an L∞ δ-
coreset Qi of Pi whose size is at most fδ(n), and let
Pi+1 = Pi \ Qi. This finishes the description of the
construction.

Let Qm denote the set Pm. Now, the sets
Q1, Q2, . . . , Qm partition P . We claim that for any
q ∈ Qi, its sensitivity σP (q) can be upper bounded by
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s(q) = 1
(1−δ)i . To show this, consider an arbitrary shape

F ∈ F . Consider any 1 ≤ j ≤ i. Observe that q ∈ Pj ;
let qj ∈ Qj be the point in the δ-coreset Qj of Pj such
that dist(qj , F ) = maxp∈Qj dist(p, F ). We have

dist(qj , F ) = max
p∈Qj

dist(p, F ) ≥ (1− δ) ·max
p∈Pj

dist(p, F )

≥ (1− δ) · dist(q, F ).

Thus dist(q,F )P
p∈P dist(p,F )

≤ dist(q,F )P
1≤j≤i dist(qj ,F )

≤ 1
(1−δ)i .

Therefore, σP (q) ≤ s(q) = 1
(1−δ)i .

Finally,
∑
p∈P s(p) =

∑m
i=1

|Qi|
(1−δ)i ≤

fδ(n)
∑m
i=1

1
(1−δ)i ≤

fδ(n) logn
1−δ . �

The construction in the proof has some resemblence
to constructions of L∞ coresets with outliers [3]. We
note that the proof actually yields an algorithm for
computing the bound s(p) for each p ∈ P , provided
we have at hand an algorithm for computing the δ-
coreset Qi of Pi. Instead of computing the δ-coreset
from scratch for each Pi, we can use dynamic algorithms
for maintaining coresets under insertion and deletion.
We initialize the structure by inserting points in P1. For
each i, we delete the points in the δ-coreset Qi of Pi;
after deleting every point in Qi, the dynamic structure
will hold our δ-coreset Qi+1 of Pi+1.

As an example of an application of Lemma 6,
let us consider the (j, 0)-projective clustering problem
(Rd,F). The L∞ version of this is better known as the
j-center problem, and its L1 version as the j-median.
It is well known that for this shape fitting problem,
any P ⊂ Rd admits an L∞ (2/3)-coreset of size j + 1.
In fact, such a coreset {p1, . . . , pj+1} is obtained by
choosing p1 ∈ P arbitrarily, and for each 1 ≤ i ≤ j,
letting pi+1 be the point in P furthest from {p1, . . . , pi}.
Thus Lemma 6 yields a bound of O(j log n) on the total
sensitivity of P . Comparing this with the bound of
O(j) on the total sensitivity by Langberg and Schulman
[28], we see that the utility of Lemma 6 is not that it
yields the best possible bounds on the total sensitivity,
but that it yields pretty good bounds with relative
ease. This is useful for more complicated shape fitting
problems, to which we turn next. In the remainder of
this section, and throughout Section 4, we treat the
dimension d as a constant.

Theorem 3.1. Let P ⊆ Rd be an n-point instance
of a shape fitting problem (Rd,F) that is either (a)
circle fitting, (b) (j, 1) projective clustering, or (c)
integer (j, k) projective clustering. We can compute
in O(n(log n)O(1)) time an upper bound s(p) on the
sensitivity σP (p) for each p ∈ P so that

∑
p∈P s(p) ≤

(log n)O(1). For the (j, 1) projective clustering problem,

the constant in the exponent of the logarithm depends on
j and d, and for the integer (j, k) projective clustering
problem, it depends on j, k, and d.

Proof. Circle Fitting: An L∞ 1/2-coreset of size O(1)
can be computed for any n-point set can be computed
in time O(n), see for example [2] and [1]. Using the
dynamization technique described in these papers, such
a 1/2-coreset can be maintained in (log n)O(1) time per
insert or delete. The result follows using Lemma 6 and
the remarks following its proof on the implied algorithm
and its dynamization.

(j, 1) projective clustering: An L∞ 1/2-coreset
of size O(1) (with the constant depending on j) exists
for any n-point set [5], but the construction in that
paper does not describe an efficient enough algorithm
for constructing such a coreset. Nevertheless, using
techniques that are now standard, a 1/2-coreset of size
(log n)O(1) can be computed in O(n(log n)O(1)) time.
The dynamization technique described in [1] allows us to
maintain a 1/2-coreset in (log n)O(1) time per insertion
and deletion.

Integer (j, k) projective clustering: An L∞ 1/2-
coreset of size (log ∆ · log n)O(1) can be computed in
time n(log ∆ · log n)O(1) for any n-point set with integer
coordinates and diameter ∆ [16]. The dynamization
technique in [1] allows us to maintain a 1/2-coreset in
(log ∆ log n)O(1) time per insertion and deletion. The
result follows by recalling that ∆ is (nd)O(1) for any
input to the integer projective clustreing problem with
n points. �

4 Discretization and Coresets

Theorem 3.1 gives a way of obtaining good bounds on
the sensitivities of each of the points in the input P . If
these bounds are used in the sampling scheme described
in Section 2, then Lemma 2.2 tells us that for a high
enough sample size, the sample approximates P with
respect to a fixed shape F ∈ F with high probability.
We would like the approximation to hold with respect
to every shape in F . To do this, it is convenient to
show, roughly speaking, the existence of a polynomial
sized subfamily F ′ ⊆ F with the property that if the
sample approximates P with respect to every shape in
F ′, it approximates P with respect to every shape in F .
We call such an F ′ a discretization for F .

Discretization is a tool that is used in many coreset
constructions, but the construction here achieving it
is different from those in most of the previous papers
because of the actual shape fitting problems to which it
is applied. Our construction has some resemblance to
the cover code construction in [28]. We first stating our
result on the discretization for the circle fitting problem,
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and then for the projective clustering problem.

Theorem 4.1. Let P ⊆ Rd be an n-point instance of
the circle fitting problem (R2,F), and 1

n ≤ ε < 1 be a
parameter. There exists a set C of O(n12) circles with
the following guarantee: let S ⊆ P be any subset, with a
weight wp ≥ 0 for each p ∈ S, satisfying the properties
that (a) |cost(S,C)−cost(P,C)| ≤ εcost(P,C) for every
circle C ∈ C; and (b) the overall weights of points in
S,
∑
p∈S wp, is at most 2n. Then such an S is an

L1 5ε-coreset for P , that is, |cost(S,C)− cost(P,C)| ≤
5εcost(P,C) for every circle C ∈ F .

The discretization theorem for projective clustering
is proved in a similar way, but has to handle one
complication: while a circle is a “nice” shape, a union
of j k-subspaces is only a union of “nice” shapes.

Theorem 4.2. Let P ⊆ Rd be an n-point instance of
the (j, k) projective clustering problem problem (Rd,F),
and 1

n ≤ ε < 1 be a parameter. There exists a sub-
set F ′ ∈ F of size nO(1) with the following guarantee:
let S ⊆ P be any subset, with a weight wp ≥ 0 for each
p ∈ S, and 1

n ≤ ε < 1 be a parameter satisfying the prop-
erties that (a) |cost(S, F )−cost(P, F )| ≤ εcost(P, F ) for
every shape F ∈ F ′; and (b) the overall weight of points
in S,

∑
p∈S wp, is at most 2n. Then such an S is an

L1 5ε-coreset for P , that is, |cost(S, F )− cost(P, F )| ≤
5εcost(P, F ) for every shape F ∈ F . The constant in
the exponent of the polynomial bounding the size of F ′
depends on j, k, and d.

We first use the discretization theorems to derive
the existence of coresets for the circle fitting and projec-
tive clustering problems, and then present their proofs.

Theorem 4.3. Let P ⊆ Rd be an n-point instance of a
shape fitting problem (Rd,F) that is either (a) circle
fitting, (b) (j, 1) projective clustering, or (c) integer
(j, k) projective clustering. Let 5

n ≤ ε < 1 be a
parameter. There is a randomized algorithm that runs
in n (logn)O(1)

ε2 time and outputs with probability at least

1/6 an ε-coreset S of size (logn)O(1)

ε2 .

Proof. We describe the proof in detail for the circle
fitting problem, and then make a brief remark on
the very similar proofs for the projective clustering
problems. The algorithm is to first compute an upper
bound s(p) on the sensitivity σP (p) for each p ∈ P using
Theorem 3.1. Fix the set C implied by Theorem 4.1.
(Note that we don’t need to actually compute C, we
just need it for the analysis.)

Using the upper bounds s(·), we constructed a
weighted sample S ⊆ P of size r as described in Section

2. We only need to set the number of samples r
sufficiently large so that with probability at least 1/6,
the following two conditions hold for S: (a) |cost(P,C)−
cost(S,C)| ≤ ε · cost(P,C) for every circle C ∈ C, and
(b)

∑
p∈S wp ≤ 2n.

We first consider condition (a). We set r large
enough so that the following inequality holds for a fixed
circle C ∈ C:

Pr (|cost(P,C)− cost(S,C)| ≤ εcost(P,C)) ≥ 1−1
3
· 1
|C|
.

Using Lemma 2.2, it suffices to set

r = O


(∑

p∈P s(p)
)2

ε2
· ln |C|

 .

The choice of r guarantees that condition (a) in
Theorem 4.1 holds with probability at least 2/3, which
can be shown by an application of union bound to the
set of circles in C.

Consider condition (b). The expectation of∑
p∈S wp is the cardinality of P : the expected weight of

the point in each draw is n/r, by the following calcula-
tion,∑
p∈P

wp · Pr (p is selected) =

∑
p∈P

(
1
r
· 1

Pr (p is selected)

)
· Pr (p is selected) =

n

r

And we totally draw r points from P , hence the
overall expectation E

(∑
p∈S wp

)
is n by linearity of

expectation. Using Markov inequality, we have

Pr

∑
p∈S

wp ≥ 2n

 ≤ 1/2.

Thus condition (a) and condition (b) holds simulta-
neously with probability at least 1/6. Theorem 4.1 then
tells us that S is an L1 5ε-coreset of P with probability
at least 1/6. Substitute the upper bounds of |C| and∑
p∈P s(p), the number of samples we need to draw is

r =
(log n)O(1)

ε2
.

The proof for the projective clustering problems is
very similar – the only change is the use of Theorem 4.2
instead of Theorem 4.1. �

1334 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

2/
16

 to
 1

09
.2

30
.6

7.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



We note that for the (j, 1) projective clustering
problem, small L1 coresets are already know to exist
[17, 23]; the derivation in Theorem 4.3 is different
from these earlier ones and is arguably simpler at the
conceptual level.

4.1 Discretization for Circle Fitting. In this sec-
tion, we prove Theorem 4.1 by presenting a discretiza-
tion for the circle fitting problem. Given the point set
P = {p1, . . . , pn}, we show that there exists a small set
of circles C which satisfies the requirements stated in
Theorem 4.1. We follow a similar approach as [31].

For any δ ∈ R and any function f : R3 → R, the
δ-level set of f , denoted by lev (f, δ), is the set of points
in R3 satisfying f(x, y, r) = δ:

lev (f, δ) := {(x, y, r)|f(x, y, r) = δ}.

Let Cx,y,r denote the circle in the plane with center
(x, y) and radius r. Let δi = i/n2, where i = 1, · · · , n2+
1. For each pair of points pi = (xi, yi) and pj = (xj , yj),
define a function fi,j : R3 → R:

fi,j(x, y, r) :=
dist(pi, Cx,y,r)
dist(pj , Cx,y,r)

=
|
√

(x− xi)2 + (y − yi)2 − r|
|
√

(x− xj)2 + (y − yj)2 − r|
,

which is the ratio of the distance from point pi to the
circle Cx,y,r to the distance from point pj to this circle.
For each point pi in P , we define a function fi : R3 → R:

fi(x, y, r) := dist(pi, Cx,y,r)

= |
√

(x− xi)2 + (y − yi)2 − r|,

which is the distance from point pi to the circle Cx,y,r.
The level sets for the circle fitting problem are:

G :={lev (fi,j , δk) |1 ≤ i, j ≤ n, 1 ≤ k ≤ n2 + 1}∪
{lev (fi, 0) |1 ≤ i ≤ n}.

Note that only points (x, y, r) with r ≥ 0 correspond
to circles as r is the radius of the circle Cx,y,r, thus
it suffices to consider R2 × R+. The level sets in G
partitions this space. We denote the arrangement of
level sets in G by A (G). Set δ0 = 0 and δn2+2 = ∞.
Consider a cell A in A (G) and suppose pj ∈ P is a point
such that dist(pj , Cx,y,r) > 0 for every (x, y, r) ∈ A. Let
pi ∈ P be any point. It is not hard to see that there
exists 0 ≤ k ≤ n2 + 1, such that fi,j(x, y, r) ∈ [δk, δk+1)
for all (x, y, r) ∈ A. This property of the arrangement
is what we are after. Note however that a level set
in G is not necessarily a zero set of a constant-degree
polynomial, and hence we are not aware of ways of

showing good upper bounds on the number of cells in
A (G).

As we will see, each level set in G is closely related
to the zero set of a constant degree polynomial. In the
following, we compute a set G′ that includes such a
constant-degree polynomial, with variables x, y, r, cor-
responding to each level set in G. For technical reasons,
G′ will also include some other related polynomials. The
arrangement (restricted to R2 × R+) of the zero set of
polynomials in G′, denoted by A (G′), has the property
stated in Lemma 4.1. For the sake of exposition, the
Lemma is stated before describing the actual polynomi-
als in G′.

Lemma 4.1. Let C be a cell in A (G′). Assume that
pj ∈ P satisfies that dist(Cx,y,r, pj) > 0, ∀(x, y, r) ∈ C.
Fix pi and pj. Let δ0 = 0 and δn2+2 =∞. There exists
an integer k, 0 ≤ k ≤ n2 + 1, such that fi,j(x, y, r) ∈
[δk, δk+1), ∀(x, y, r) ∈ C.

Once we have G′, we compute the set C in Theo-
rem 4.1 so that it includes at least one point from each
cell of A (G′); the size of C is O(|G′|3) [10]. In the follow-
ing section, we describe the set of polynomials G′ and
prove Lemma 4.1. Subsequently, we show that C pro-
vides the guarantee in the statement of Theorem 4.1.

4.1.1 Computing the set G′ of polynomials. Fix
i, j and k. Observe that set lev (fi,j , δk) is a subset of
the zero set of a constant-degree polynomial in x, y and
r (xi, yi, xj , yj and δk are constants): we have

|
√

(x− xi)2 + (y − yi)2 − r|
|
√

(x− xj)2 + (y − yj)2 − r|
= δk.(4.3)

Multiply both sides by |
√

(x− xj)2 + (y − yj)2 − r|, we
obtain

|
√

(x− xi)2 + (y − yi)2 − r| =

δk|
√

(x− xi)2 + (y − yi)2 − r|.
(4.4)

Squaring both sides, we obtain(√
(x− xi)2 + (y − yi)2 − r

)2

=

δ2
k

(√
(x− xj)2 + (y − yj)2 − r

)2

,

(4.5)

Arrange the terms, we have

(4.6)
(x−xi)2+(y−yi)2+r2−δ2

k

(
(x− xj)2 + (y − yj)2 + r2

)
= 2r

√
(x− xi)2 + (y − yi)2−2δ2

kr
√

(x− xj)2 + (y − yj)2
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Squaring both sides, we have[
(x− xi)2 + (y − yi)2 + r2−

δ2
k

(
(x− xj)2 + (y − yj)2 + r2

) ]2
=(

2r
√

(x− xi)2 + (y − yi)2−

2δ2
kr
√

(x− xj)2 + (y − yj)2
)2

(4.7)

Arrange the terms, we have

[
(x− xi)2 + (y − yi)2 + r2−

δ2
k

(
(x− xj)2 + (y − yj)2 + r2

) ]2
−[

4r2
(
(x− xi)2 + (y − yi)2

)
+

4δ4
kr

2
(
(x− xj)2 + (y − yj)2

) ]
=

− 8δ2
kr

2
√

(x− xi)2 + (y − yi)2

√
(x− xj)2 + (y − yj)2

(4.8)

Squaring both sides, we have

([
(x− xi)2 + (y − yi)2 + r2−

δ2
k

(
(x− xj)2 + (y − yj)2 + r2

) ]2−[
4r2

(
(x− xi)2 + (y − yi)2

)
+

4δ4
kr

2
(
(x− xj)2 + (y − yj)2

) ])2

=

64δ4
kr

4
(
(x− xi)2 + (y − yi)2

) (
(x− xj)2 + (y − yj)2

)
,

(4.9)

Hence lev (fi,j , δk) is a subset of the zero set of the
polynomial gi,j,k(x, y, r):

gi,j,k(x, y, r) =([
(x− xi)2 + (y − yi)2 + r2−

δ2
k

(
(x− xj)2 + (y − yj)2 + r2

) ]2−[
4r2

(
(x− xi)2 + (y − yi)2

)
+

4δ4
kr

2
(
(x− xj)2 + (y − yj)2

) ])2

−

64δ4
kr

4
(
(x− xi)2 + (y − yi)2

) (
(x− xj)2 + (y − yj)2

)
We add to G′ the polynomials gi,j,k for each 1 ≤

i, j ≤ n and 1 ≤ k ≤ n2 + 1. From the derivation
of gi,j,k, it is easy to see that it is possible that some
point (x, y, r) ∈ zer (gi,j,k), while (x, y, r) /∈ lev (fi,j , δk).
As an example, consider Eq (4.8) and Eq (4.9): points

satisfying Eq (4.8) also satisfy Eq (4.9); however, points
satisfying the following equation satisfy Eq (4.9), do not
satisfy Eq (4.8) unless x = xi and y = yi or x = xj and
y = yj .[

(x− xi)2 + (y − yi)2 + r2−

δ2
k

(
(x− xj)2 + (y − yj)2 + r2

) ]2−[
4r2

(
(x− xi)2 + (y − yi)2

)
+

4δ4
kr

2
(
(x− xj)2 + (y − yj)2

) ]
=

8δ2
kr

2
√

(x− xi)2 + (y − yi)2

√
(x− xj)2 + (y − yj)2,

For this technical reason, we now add to G′ an
extra set of polynomials associated with the level set
lev (fi,j , δk).

g′j(x, y, r) :=(x− xj)2 + (y − yj)2 − r2.

g′′i,j,k(x, y, r) :=(x− xi)2 + (y − yi)2 + r2−
δ2
k

(
(x− xj)2 + (y − yj)2 + r2

)
.

g′′′i,j,k(x, y, r) :=r2
(
(x− xi)2 + (y − yi)2

)
−

δ4
k

(
(x− xj)2 + (y − yj)2

)
.

g′′′′i,j,k(x, y, r) :=
[
(x− xi)2 + (y − yi)2 + r2−

δ2
k

(
(x− xj)2 + (y − yj)2 + r2

) ]2

−[
4r2

(
(x− xi)2 + (y − yi)2

)
+

4δ4
kr

2
(
(x− xj)2 + (y − yj)2

) ]
Note that lev (fj , 0) = zer

(
g′j
)
, hence we do not need to

add polynomials for level sets in {lev (fi, 0) |1 ≤ i ≤ n}
again.

Now we prove Lemma 4.1.

Proof. We prove the lemma by contradiction. Suppose
the statement is false. Then there exists k, such that

fi,j(x, y, r) < δk ≤ fi,j(x′, y′, r′),

for some (x, y, r) and (x′, y′, r′) in C. Since fi,j is
a continuous function in this cell C, there exists a
point (x′′, y′′, r′′) ∈ C, such that fi,j(x′′, y′′, r′′) =
δk. Then gi,j,k(x′′, y′′, r′′) = 0. Since (x, y, r) and
(x′′, y′′, r′′) are in the same cell, gi,j,k(x, y, r) = 0.
Since fi,j(x′′, y′′, r′′) = δk, g′′′′i,j,k(x′′, y′′, r′′) ≤ 0. Thus
g′′′′i,j,k(x, y, r) ≤ 0. Thus (x, y, r) satisfies Eq (4.8), thus
also Eq (4.7). According to Eq (4.6), g′′i,j,k(x′′, y′′, r′′)
and g′′′i,j,k(x′′, y′′, r′′) are both nonnegative or nega-
tive, thus g′′i,j,k(x, y, r) and g′′′i,j,k(x, y, r) are also both
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nonnegative or negative, hence (x, y, r) also satisfies
Eq (4.6), which implies (x, y, r) satisfies Eq (4.4). Since
dist((x, y, r), pj) 6= 0, we have fi,j(x, y, r) = δk, which
contradicts the assumption that fi,j(x, y, r) < δk. �

The number of polynomials gi,j,k, g′′i,j,k, g′′′i,j,k and
g′′′′i,j,k is O(n4); there are n(n − 1) pairs of distinct
points, and for each pair, there are n2 + 1 choices of δk.
The number of polynomials of g′j is n. Hence, the total
number of polynomials in G′ is O(n4). An application
of the results in [10] implies that there exists a subset
C of R3 of cardinality O(n12), such that each cell of the
arrangement A (G′) contains at least one point from C.

4.1.2 C is a good discretization. Let S ⊂ P be a
weighted subset satisfying both condition (a) and (b) in
Theorem 4.1, that is, (a) |cost(S,C) − cost(P,C)| ≤
εcost(P,C) for every circle C ∈ C; (b) the overall
weights of points in S,

∑
p∈S wp, is at most 2n. We

now show that S approximates P with respect to every
circle on the plane. Consider a circle C ′ with center
(x′, y′) and radius r′. Suppose (x′, y′, r′) is in a cell A
of the arrangement A (G′). Suppose C ∈ C with cen-
ter (x, y) and radius r is the circle such that (x′, y′, r′)
and (x, y, r) are in the same cell A. In other words, C
and C ′ are in the same set of circles corresponding to
the cell A. We show that if the sample S approximates
P with respect to C, then S also approximates P with
respect to C ′, as long as the overall weights of points in
the sample S is O(n).
If for every point p in the input point set P ,
dist(p, C ′) = 0, that is, all the points are incident
on the circle C ′, then trivially the sampling error
|cost(P,C ′)− cost(S,C ′)| is zero, since cost(P,C ′) and
cost(S,C ′) are both zero. Therefore, we may assume
that there exists some point not incident on C ′. In par-
ticular, let pi∗ be a furthest point from C ′, then we have

dist(pi∗ , C ′) = max
p∈P

dist(p, C ′) > 0.

We have ∣∣∣∣ cost(P,C ′)
dist(pi∗ , C ′)

− cost(S,C ′)
dist(pi∗ , C ′)

∣∣∣∣ ≤(4.10) ∣∣∣∣ cost(P,C ′)
dist(pi∗ , C ′)

− cost(P,C)
dist(pi∗ , C)

∣∣∣∣+∣∣∣∣ cost(P,C)
dist(pi∗ , C)

− cost(S,C)
dist(pi∗ , C)

∣∣∣∣+∣∣∣∣ cost(S,C)
dist(pi∗ , C)

− cost(S′, C)
dist(pi∗ , C)

∣∣∣∣ ,

where by definition,

cost(P,C) =
∑
p∈P

dist(p, C),

cost(S,C) =
∑
p∈S

wpdist(p, C).

Consider the first addend on the right-hand side of
Eq (4.10).

∣∣∣∣ cost(P,C ′)
dist(pi∗ , C ′)

− cost(P,C)
dist(pi∗ , C)

∣∣∣∣
(4.11)

≤
n∑
i=1

∣∣∣∣ dist(pi, C ′)
dist(pi∗ , C ′)

− dist(pi, C)
dist(pi∗ , C)

∣∣∣∣
=

n∑
i=1

|fi,i∗(x′, y′, r′)− fi,i∗(x, y, r)| ≤ n ·
1
n2

=
1
n
.

The last inequality follows from the fact that (x, y, r)
and (x′, y′, r′) are in the same cell of A (G′) and
Lemma 4.1.

Following a similar argument, we have the following
upper bound of the third addend:∣∣∣∣ cost(S,C)

dist(pi∗ , C)
− cost(S,C ′)

dist(pi∗ , C ′)

∣∣∣∣
≤
∑
p∈S

wp ·
∣∣∣∣ dist(p, C)
dist(pi∗ , C)

− dist(p, C ′)
dist(pi∗ , C ′)

∣∣∣∣
≤

∑
p∈S

wp

 · 1
n2
≤ 2
n
.

The last inequality follows from the assumption that∑
p∈S wp ≤ 2n.

Consider the second addend in Eq (4.10). By
assumption, S approximates P with respect to C as
C ∈ C, that is,

|cost(P,C)− cost(S,C)| ≤ εcost(P,C).

Hence, dividing both sides by dist(pi∗ , C), we obtain∣∣∣∣ cost(P,C)
dist(pi∗ , C)

− cost(S,C)
dist(pi∗ , C)

∣∣∣∣ ≤ ε · cost(P,C)
dist(pi∗ , C)

Further, since

cost(P,C)
dist(pi∗ , C)

≤ cost(P,C ′)
dist(pi∗ , C ′)

+ n · 1
n2
,

we have
(4.12)∣∣∣∣ cost(P,C)

dist(pi∗ , C)
− cost(S,C)

dist(pi∗ , C)

∣∣∣∣ ≤ ε · cost(P,C ′)
dist(pi∗ , C ′)

+ ε · 1
n
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Eq (4.10), Eq (4.11) and Eq (4.12) together imply that∣∣∣∣cost(P,C ′)− cost(S,C ′)
dist(pi∗ , C ′)

∣∣∣∣ ≤ ε · cost(P,C ′)
dist(pi∗ , C ′)

+
3 + ε

n

≤ ε · cost(P,C ′)
dist(pi∗ , C ′)

+
4
n

Multiply both sides by dist(pi∗ , C ′), we obtain

|cost(P,C ′)− cost(S,C ′)| ≤ εcost(P,C ′) +
4dist(pi∗ , C ′)

n
≤ εcost(P,C ′) + 4ε · cost(P,C ′) = 5εcost(P,C ′),

where the second inequality follows because 1/n ≤ ε.

4.2 Discretization for Projective Clustering. In
this section, we present the proof of Theorem 4.2, the
discretization theorem for projective clustering.

The family of shapes are j k-flats, where a k-flat
is a subspace spanned by k vectors in Rd translated by
a point in Rd. To be precise, the k-flat determined by
k + 1 vectors v1,v1, · · · ,vk+1 is

Fv1,··· ,vk+1
= vk+1 + span (v1, · · · ,vk)

=

{
vk+1 +

k∑
i=1

aivi

∣∣∣∣ai ∈ R, i = 1, · · · , k

}
,

where vi, i = 1, · · · , k + 1 are vectors in Rd. The set of
k-flats is

K = {Fv1,··· ,vk+1
|〈vi,vj〉 = 0, 1 ≤ i < j ≤ k, 〈vi,vi〉 = 1,

i = 1, · · · , k}.

Observe that we may parameter each k-flat with (k +
1)d real numbers by considering each vector vi as a
sequence of d reals numbers: given a sequence of real
numbers (xu,v), 1 ≤ u ≤ d, 1 ≤ v ≤ k + 1, the
vector vi is (x1,i, · · · , xd,i), i = 1, · · · , k + 1. The
k-flat corresponding to this sequence (xu,v) is the k-
flat corresponding to the k + 1 vectors obtained from
this sequence. Since we parameter each k-flat with
k orthogonal unit vectors, we only need to consider
a subset U of R(k+1)d. The family of shapes is Kj ,
which consists of all j-tuples of k-flat. Therefore, we
may parameter each shape, {F1, · · · , Fj}, Fi ∈ K by a
sequence of j(k + 1)d real numbers in U j .
For convenience of notation, we denote the point in
Rj(k+1)d as (xu,v,w), where 1 ≤ u ≤ d, 1 ≤ v ≤ k + 1,
1 ≤ w ≤ j. The ith k-flat, denote by by hix1,1,1,··· ,xd,k+1,j

,
is determined by xu,v,i, where 1 ≤ u ≤ d and 1 ≤ v ≤
k + 1: we obtain k + 1 vectors in Rd, which are

x1,1,i

x2,1,i

...
xd,1,i

 ,

x1,2,i

x2,2,i

...
xd,2,i

 , · · · ,

x1,k+1,i

x2,k+1,i

...
xd,k+1,i

 .

The k-flat hix1,1,1,··· ,xd,k+1,j
is

hix1,1,1,··· ,xd,k+1,j
=


x1,k+1,i

x2,k+1,i

...
xd,k+1,i

+
k∑
v=1

av


x1,v,i

x2,v,i

...
xd,v,i

 |av ∈ R

 .

The distance from a point p = (p1, · · · , pd) in Rd to the
above k-flat is

dist(p, hix1,1,1,··· ,xd,k+1,j
) =

∥∥∥∥∥

p1 − x1,k+1,i

p2 − x2,k+1,i

...
pd − xd,k+1,i

−
k∑
v=1

〈
p1 − x1,k+1,i

p2 − x2,k+1,i

...
pd − xd,k+1,i

 ,

x1,v,i

x2,v,i

...
xd,v,i


〉

x1,v,i

x2,v,i

...
xd,v,i


∥∥∥∥∥

2

The distance from a point p ∈ Rd to j k-flats
determined by {xu,v,w} is the minimum distance from
the point to one of the flats:

min
1≤i≤j

dist(p, hix1,1,1,··· ,xd,k+1,j
).

Therefore, once we obtain a partition of the space
Rj(k+1)d, such that for each cell A ∩ U j , there exists
p, q ∈ P and 0 ≤ l ≤ n2 + 1, with

min1≤i≤j dist(p, hix1,1,1,··· ,xd,k+1,j
)

min1≤i′≤j dist(q, hi′x1,1,1,··· ,xd,k+1,j
)
∈ [δl, δl+1) ,

∀(x1,1,1, · · · , xd,k+1,j) ∈ A ∩ U j ,

then we can obtain the discretization F ′ in Theorem 4.2
by picking one point from each A ∩ U j . The set F ′ is
a good discretization, following a similar reasoning as
discretization of the circle fitting problem.
It seems difficult to find a polynomial with variables
x1,1,1, · · · , xd,k+1,j whose zero set contains lev (gp,q, δk),
where gp,q is defined as

gp,q(x1,1,1, · · · , xd,k+1,j) :=

min1≤i≤j dist(p, hix1,1,1,··· ,xd,k+1,j
)

min1≤i′≤j dist(q, hi′x1,1,1,··· ,xd,k+1,j
)
.

Hence we do not use level sets defined by

gp,q(x1,1,1, · · · , xd,k+1,j) = δk, k = 1, · · · , n2 + 1.

Instead, we consider the family of functions gp,q,i,i′ :
Rj(k+1)d → R, p, q ∈ P , 1 ≤ i, i′ ≤ j, which is defined
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below:

gp,q,i,i′(x1,1,1, · · · , xd,k+1,j) :=
dist(p, hix1,··· ,xj(k+1)d

)

dist(q, hi′x1,··· ,xj(k+1)d
)
.

The level sets are {lev (gp,q,i,i′ , δk) |p, q ∈ P, 1 ≤ i, i′ ≤
j}. The intuition is that in a subset of U j , if gp,q,i,i′
only changes slightly for each pair of flats, then the
ratio gp,q also changes slightly. This fact is proved in
the Lemma 4.2.

Lemma 4.2. Define δ0 = 0 and δn2+2 = ∞. Consider
a subset A of U j, and a q ∈ P such that the distance
from q to any j-tuple of k-flats determined by points in
A is nonzero (that is, q is not contained in any shape
determined by points in A). Let p ∈ P be any point
distinct from q. Suppose that for every 1 ≤ i, i′ ≤ j, it
holds that for some integer l = li,i′ , where 0 ≤ l ≤ n2+1,

gp,q,i,i(x1,1,1, · · · , xd,k+1,j) ∈ [δl, δl+1)
∀(x1,1,1, · · · , xd,k+1,j) ∈ A

(note that l depends on the choice of i, i′). Then there
exists an integer 0 ≤ l ≤ n2 + 1 so that, for every point
(x1, · · · , xj(k+1)d) in A,

gp,q(x1,1,1, · · · , xd,k+1,j) =

min1≤i≤j dist(p, hix1,··· ,xj(k+1)d
)

min1≤i≤j dist(q, hix1,··· ,xj(k+1)d
)
∈ [δl, δl+1) .

Proof. We prove the lemma by contradiction. Suppose
there does not exist such an l, then there exists an
integer t, 1 ≤ t ≤ n2 + 1, such that for some two points
x = (x1, · · · , xj(k+1)d) and y = (y1, · · · , yj(k+1)d) in A,
it holds that gp,q(x) < δt while gp,q(y) ≥ δt. Our goal
is to derive the fact that there would exist two integers
l′ and l, such that

dist(p, hl
′
(x))

dist(q, hl(x))
< δt,

while
dist(p, hl

′
(y))

dist(q, hl(y))
≥ δt,

which violates the assumption that
gp,q,l,l′(x1,1,1, · · · , xd,k+1,j) ∈ [δs, δs+1) for some
integer s.
Choose the index l′ so that

min
1≤i≤j

dist(p, hix) = dist(p, hl
′

x).

and choose l so that

min
1≤i≤j

dist(q, hiy) = dist(q, hly).

Then

dist(p, hl
′

x)
dist(q, hlx)

≤ dist(p, hl
′

x)
min1≤i≤j dist(q, hix)

=
min1≤i≤j dist(p, hix)
min1≤i≤j dist(q, hix)

< δt,

dist(p, hl
′

y)
dist(q, hly)

≥
min1≤i≤j dist(p, hiy)

dist(q, hly)

=
min1≤i≤j dist(p, hiy)
min1≤i≤j dist(q, hiy)

≥ δt.

�

We now describe the complete collection of level
sets. For each point p in P and i, define the function
gp,i : Rj(k+1)d → R:

gp,i(x1,1,1, · · · , xd,k+1,j) := dist(p, hix1,··· ,xj(k+1)d
).

Define δk = k/n2, k = 1, · · · , n2 + 1. The set of level
sets are:

G = {lev (gp,q,i,i′ , δk) |p, q ∈ P, p 6= q, 1 ≤ i, i′ ≤ j,
1 ≤ k ≤ n2 + 1} ∪ {lev (gp,i, 0) |p ∈ P, 1 ≤ i ≤ j} .

Following a similar approach as the discretization for
circle fitting problem, we do not consider the arrange-
ment of the level sets in G directly; instead we com-
pute a collection G′ of constant-degree polynomials,
with variables x1,1,1, · · · , xd,k+1,j , such that Lemma 4.3
holds. Let A (G′) denote the arrangement (restricted to
U j) of the zero sets of the polynomials in G′.

Lemma 4.3. Let C be a cell in A (G′). Assume
that q ∈ P and an integer i′ ∈ [1, j] satisfies that
gq,i′(x1,1,1, · · · , xd,k+1,j) > 0, ∀(x1,1,1, · · · , xd,k+1,j) ∈
C. Fix p ∈ P and i ∈ [1, j]. Let δ0 = 0 and
δn2+2 = ∞. There exists an integer l, 0 ≤ l ≤
n2+1, such that gp,q,i,i′(x1,1,1, · · · , xd,k+1,j) ∈ [δl, δl+1),
∀(x1,1,1, · · · , xd,k+1,j) ∈ C.

We now compute the collection of polynomials in
G′. By definition,

gp,q,i,i′(x1,1,1, · · · , xd,k+1,j) =
gp,i(x1,1,1, · · · , xd,k+1,j)/gq,i′(x1,1,1, · · · , xd,k+1,j).

Note that (gp,i(x1,1,1, · · · , xd,k+1,j))2 and
(gq,i′(x1,1,1, · · · , xd,k+1,j))2 are polynomials of xu,v,w,
1 ≤ u ≤ d, 1 ≤ v ≤ k + 1, 1 ≤ w ≤ j, the level
set lev (gp,q,i,i′ , δk) is a subset of the zero set of a
polynomial of j(k + 1)d variables:

Pp,q,i,i′,k(x1,1,1, · · · , xd,k+1,j) :=

(gp,i(x1,1,1, · · · , xd,k+1,j))2 − δ2
k(gq,i′(x1,1,1, · · · , xd,k+1,j))2.

1339 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

05
/0

2/
16

 to
 1

09
.2

30
.6

7.
85

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



The level set lev (gp,i, 0) is the zero set of the polynomial
(gp,i(x1,1,1, · · · , xd,k+1,j))2. Let

G′ :=
{
Pp,q,i,i′,k|p, q ∈ P, 1 ≤ i, i′ ≤ j, 1 ≤ k ≤ n2 + 1

}
∪{

(gp,i(x1,1,1, · · · , xd,k+1,j))2|p ∈ P, 1 ≤ i ≤ j
}
.

Following an analogous argument as the proof of
Lemma 4.11, Lemma 4.3 can be shown. There are O(n4)
polynomials of constant degree, hence the number of
cells in the arrangement of A (G′) is O(n4j(k+1)d) [10].

The rest of the proof of Theorem 4.2 – showing that
any weighted subset S ⊆ P satisfying conditions (a) and
(b) in the statement of the theorem is an L1 5ε-coreset
of P – follows by a similar argument as for the circle
fitting problem, using Lemma 4.2.

5 Projective Clustering in High Dimensions

We consider the integer (j, k) projective clustering prob-
lem (Rm,F). Let P ⊆ Rm be an input instance of n
points with integer coordinates of magnitude at most
∆ = (mn)10, and 0 < ε < 1 be a parameter. We de-
scribe an algorithm that runs in O(mn(log(mn))O(1))
and returns a shape F ∈ F (a union of j k-flats) that
with probability at least a constant is nearly optimal:
cost(P, F ) ≤ (1 + ε)cost(P, F ′) for any F ′ ∈ F . Note
that we consider j and k constants but the dimension
m as part of the input. We have used m rather than d
to denote the dimension of the host space to emphasize
that here, unlike in the last two sections, it is not a con-
stant. For simplicity, we assume that the shape we are
trying to fit is a union of j linear k-subspaces in Rm, as
opposed to a union of affine subspaces.

The result is obtained in three steps. First, we use a
known dimension reduction result to reduce the problem
to a (j, k) projective clustering in constant dimension.
To solve the projective clustering problem in constant
dimension, we compute a small coreset using essentially
Theorem 4.3. In the third step, we solve the projective
clustering problem on the coreset nearly optimally in
time polynomial in the size of the coreset.

5.1 Dimension reduction. Using the algorithm
of Deshpande and Varadarajan [15], we compute

in time nm
(
kj
ε

)O(1)

a linearly independent subset

1Note that zer
`
Pp,q,i,i′,k

´
indeed contains points that

are not in lev
`
gp,q,i,i′ , δk

´
, which are points satisfying

gp,i(x1,1,1, · · · , xd,k+1,j) = −δkgq,i′ (x1,1,1, · · · , xd,k+1,j),

or points satisfying gp,i(x1,1,1, · · · , xd,k+1,j) =
gq,i′ (x1,1,1, · · · , xd,k+1,j) = 0. Since gp,i and gq,i′ are non-
negative functions, and δk > 0, if gp,i(x1,1,1, · · · , xd,k+1,j) =

−δkgq,i′ (x1,1,1, · · · , xd,k+1,j), then gp,i(x1,1,1, · · · , xd,k+1,j) =
gq,i′ (x1,1,1, · · · , xd,k+1,j) = 0, which is in the zero set of (gq,i′ )

2.

{a1, a2, . . . , ad′} ⊆ P whose span contains (with proba-
bility at least 0.9) a shape F ∈ F such that cost(P, F ) ≤

(1 + ε)cost(P, F ′) for any F ′ ∈ F . Here, d′ =
(
kj
ε

)O(1)

is a constant. Let V denote the subspace spanned by
{a1, a2, . . . , ad′}. It now suffices to solve the follow-
ing problem nearly optimally: among the shapes in F
that are contained in V , find the one that minimizes
cost(P, ·).

Fix b ∈ Rm orthogonal to V . For p ∈ P , let p̄
denote the orthogonal projection of p onto V and p⊥ the
projection of p onto the orthogonal complement of V .
For p ∈ P , let p′ = p̄+||p⊥||2b, and let P ′ = {p′ | p ∈ P}.
Observe that cost(P, F ) = cost(P ′, F ) for any F ∈ F
that is contained in V . It therefore suffices to solve the
following problem nearly optimally: among the shapes
in F that are contained in V , find the one that minimizes
cost(P ′, ·). This is a (j, k) projective clustering problem
in d′+1 dimensions, except for the additional constraint
that the shape must lie in the d′-dimensional subspace
V .

5.2 Computing a Coreset. Our next step is to
compute an L1 ε-coreset Q for P ′ using Theorem 4.3,
treating P ′ as a point set in d′ + 1 dimensions. For
any p′ ∈ P ′, we have ||p′||2 = ||p||2 ≤

√
m∆; however,

the coordinates of p′ when expressed in terms of an
orthonormal basis for the subspace spanned by V and b
are not necessarily integers. So we have to address this
technicality before applying Theorem 4.3. This is not
hard to do given the following lemma.

Lemma 5.1. Let F be an optimal solution for the (j, k)
projective clustering problem on the point set P . If
cost(P, F ) > 0, then cost(P, F ) > 1

(m∆)c , for some
constant c that depends only on k.

Proof. We first need the following observation.

Fact 5.1. Let {p1, p2, . . . , pk+1} be any linearly inde-
pendent subset of P . The (k+1)-dimensional volume of
the simplex spanned by this subset is at least 1

((k+1)!)2 .

Proof. Let A be the (k + 1) × m matrix whose rows
are the vectors pi. Then the volume of the simplex in
question is 1

((k+1)!)2 det(AAT ). The matrix AAT has
entries that are all integers. �

Suppose that F , the optimal solution is a union
of the j k-subspaces f1, f2, . . . , fj . Let P1, . . . , Pj be
the partition of P obtained by assigning each point
in P to the nearest of these j subspaces. Assuming
cost(P, F ) > 0, at least one of the sets, say Pi, contains
(k + 1) linearly independent points {q1, . . . , qk+1}. Let
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f ′i be a k-subspace in the span of {q1, . . . , qk+1} that
contains the projection of fi on this span. Then the set
{q1, . . . , qk+1} is contained in a (k+1)-dimensional box,
k of whose sides have length 2 maxk+1

t=1 ||qt||2 and whose
(k+1)-th side has length 2 maxk+1

t=1 dist(qt, f ′i). This box
must contain the simplex spanned by {q1, . . . , qk+1}, so
we have:

1
((k + 1)!)2

≤ 2k+1(
k+1
max
t=1
||qt||2)k · k+1

max
t=1

dist(qt, f ′i)

≤ (2∆m)k+1 k+1
max
t=1

dist(qt, f ′i).

The lemma follows from the above inequality by
observing that cost(P, F ) ≥ maxk+1

t=1 dist(qt, f ′i) ≥
maxk+1

t=1 dist(qt, fi). �

If cost(P, F ) = 0 for the optimal F ∈ F ′, then this
must be true for some F ′ ∈ F that is contained in V as
well. This means that P itself must be contained in V .
In this case, such an F ′ can be found by applying the
method of [16] for shape fitting in the L∞ sense.

Let us therefore consider the case where
cost(P, F ) > 1

(m∆)c for the optimal F ∈ F ′. In
this case, we express the points in P ′ in terms of an
orthogonal basis for the span of V and b, but round the
coordinates of each point in P ′ to the nearest multiple
of 1

(mn∆)c1 where c1 > c is a sufficiently large integer.
We now scale so that the coordinates of points in P ′

are integers. Note that the magnitude of the largest
coordinate is (mn∆)O(1).

Now, treating P ′ as an input to the integer (j, k)
projective clustering problem in (Rd′+1, ·) we compute
a coreset Q using Theorem 4.3. The running time for
this step is n(logmn)O(1).

5.3 Solving the Problem on the Coreset. We
need to find a shape F that is contained in V such
that cost(Q,F ) ≤ (1 + ε)cost(Q,F ′) for any shape F ′

contained in V . Since the size of Q is (log(mn))O(1), we
can afford to use a generic polynomial time algorithm
for this. For example, we can consider the discretization
for Q similar to that in Theorem 4.2, but this time
we actually compute it. We omit the details from this
version, and conclude with our main result:

Theorem 5.1. Let P be an n-point instance of the
integer (j, k)-projective clustering problem (Rm,F) (the
largest magnitude of any coordinate for a point in
P is at most (mn)10), and ε > 0 be a parameter.
There is a randomized algorithm that runs in time
mn(log(mn))O(1) and returns a shape F ∈ F such that
with constant probability, cost(P, F ) ≤ (1+ε)cost(P, F ′)
for any F ′ ∈ F . Here, j and k are constants but m is
not.

6 Conclusions

We conclude with some remarks on the work described
here and directions for future work.

• For the shape fitting problems considered in this ar-
ticle, we have assumed that the distance dist(p, F )
between a point p ∈ Rd and shape F ∈ F is the
minimum Euclidean distance from p to a point in
the shape F . The results readily generalize to the
case where dist(p, F ) is defined to be the τ -th power
of the minimum distance, for τ > 0.

• The results in Theorem 4.3 on small coresets for
circle fitting and projective clustering in fixed di-
mension imply, via techniques that are now stan-
dard, that such small coresets can be maintained
in an insertion-only streaming setting using small
space.

• One direction for future work is on improving the
parameters in the connection between L∞ coresets
and sensitivity that is made in Lemma . In this
context, we note that to apply the Lemma, it is
enough to have an L∞ δ-coreset for some 0 < δ < 1
that is closer to 1 than 0. For some problems, this
allows one to get around the difficulty that L∞
coresets tend to have exponential dependence on
the dimension. This fact is illustrated by the j-
median example following the Lemma.

• Perhaps the most interesting open problem raised is
whether a near-linear algorithm for (j, k) projective
clustering is possible in high dimensions, without
making the extra assumption that points have
integer coordinates that are polynomially bounded.
Another question is whether a small L1 coreset
exists for the integer projective clustering problem
in high dimensions; note that our work establishes
such coresets in constant dimension.

Acknowledgements. We thank the reviewers for in-
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